A364673 Number of (necessarily strict) integer partitions of n containing all of their own first differences.
1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 5, 2, 2, 4, 2, 3, 6, 4, 4, 8, 4, 4, 10, 8, 7, 8, 13, 9, 15, 12, 13, 17, 20, 15, 31, 24, 27, 32, 33, 32, 50, 42, 45, 53, 61, 61, 85, 76, 86, 101, 108, 118, 137, 141, 147, 179, 184, 196, 222, 244, 257, 295, 324, 348, 380, 433
Offset: 0
Keywords
Examples
The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24). The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21: (1) (3) (6) (12) (15) (18) (21) (2,1) (4,2) (8,4) (10,5) (12,6) (14,7) (3,2,1) (6,4,2) (8,4,2,1) (9,6,3) (12,6,3) (5,4,2,1) (5,4,3,2,1) (6,5,4,2,1) (8,6,4,2,1) (6,3,2,1) (7,5,3,2,1) (9,5,4,2,1) (8,4,3,2,1) (9,6,3,2,1) (10,5,3,2,1) (6,5,4,3,2,1)
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
-
Python
from collections import Counter def A364673_list(maxn): count = Counter() for i in range(maxn//3): A,f,i = [[(i+1, )]],0,0 while f == 0: A.append([]) for j in A[i]: for k in j: x = j + (j[-1] + k, ) y = sum(x) if y <= maxn: A[i+1].append(x) count.update({y}) if len(A[i+1]) < 1: f += 1 i += 1 return [count[z]+1 for z in range(maxn+1)] # John Tyler Rascoe, Mar 09 2024