A364681 a(n) is the number of isogeny classes of elliptic curves over GF(q), where q = A246655(n) is the n-th prime power > 1.
5, 7, 9, 9, 11, 9, 13, 13, 15, 13, 17, 17, 19, 20, 17, 21, 23, 15, 25, 25, 27, 27, 27, 29, 31, 31, 21, 33, 33, 35, 35, 29, 37, 37, 39, 41, 41, 41, 41, 43, 45, 37, 45, 25, 45, 47, 47, 49, 49, 51, 51, 51, 50, 53, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 61, 61, 63, 45, 63, 37, 65, 65
Offset: 1
Keywords
Examples
For n = 1, the a(1) = 5 isogeny classes of elliptic curves over GF(2) are parametrized by the 5 possible values for the trace of Frobenius: -2, -1, 0, 1, 2. For n = 2, the a(2) = 7 isogeny classes of elliptic curves over GF(3) are parametrized by the 7 possible values for the trace of Frobenius: -3, -2, -1, 0, 1, 2, 3.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272.
- W. C. Waterhouse, Abelian varieties over finite fields, Ann Sci. E.N.S., (4) 2 (1969), 521-560.
Programs
-
Sage
for q in range(1, 1000): if Integer(q).is_prime_power(): p, ans = Integer(q).prime_factors()[0], 0 for a in range(-floor(2*sqrt(q)), floor(2*sqrt(q))+1): if (a%p != 0) or (Integer(q).is_square() and ((abs(a) == 2*sqrt(q)) or ((p%3 != 1) and (abs(a) == sqrt(q))) or ((p%4 != 1) and (a==0)))) or ((not Integer(q).is_square()) and (((p in [2,3]) and (abs(a) == sqrt(p*q))) or (a==0))): ans += 1 print(ans)
Formula
a(n) = 2*floor(2*sqrt(q)) + 1 if q is prime, where q = A246655(n).
Comments