A364686 a(n) is the number of parity self-conjugate partitions of n.
1, 0, 1, 1, 1, 1, 1, 4, 2, 2, 2, 7, 5, 3, 4, 11, 11, 5, 10, 17, 18, 8, 17, 29, 30, 16, 28, 46, 45, 28, 42, 77, 69, 48, 65, 119, 103, 77, 97, 182, 157, 118, 149, 267, 236, 176, 222, 389, 353, 258, 335, 551, 515, 373, 494, 785, 746, 534, 718, 1099, 1061, 764, 1021, 1538, 1494
Offset: 1
Keywords
Examples
The seven parity self-conjugate partitions of 12 are (6,6), (5, 5, 2), (4, 4, 2, 2), (3, 3, 2, 2, 2), (5, 3, 2, 1, 1), (2, 2, 2, 2, 2, 2), and (6, 2, 1, 1, 1, 1). From _David A. Corneth_, Dec 09 2023: (Start) Read as digits these are, with the conjugates, (66, 222222), (552, 33222), (4422, 4422), (33222, 552), (53211, 53211), (22222, 66), (621111, 621111). 66 is extended to 660000 to then check parity of terms in the conjugate 222222. Note that for example (552, 33222) and (33222, 552) are both counted even though they hold the same partitions, just in a different order. (End)
Programs
-
Mathematica
<< "Combinatorica`" Zs[n_] := Table[0, n] PadDiff[{L1_, L2_}] := Block[{n1 = Length[L1], n2 = Length[L2]}, Which[n1 < n2, Join[L1, Zs[n2 - n1]] - L2, n1 > n2, L1 - Join[L2, Zs[n1 - n2]], n1 == n2, L1 - L2 ]] PSC1[n_] := Block[{Pttns = IntegerPartitions[n]}, Union[Flatten[ Select[Transpose[{Pttns, TransposePartition /@ Pttns}], AllTrue[PadDiff[#], EvenQ] &], 1]]] Table[Length[PSC1[n]], {n, 1, 50}]
Formula
a(n) >= A000700(n). - David A. Corneth, Dec 09 2023
Extensions
More terms from David A. Corneth, Dec 09 2023
Comments