cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364688 Number of 8-cycles in the hypercube graph Q_n.

Original entry on oeis.org

0, 0, 0, 6, 696, 6720, 39840, 184800, 736512, 2644992, 8801280, 27624960, 82790400, 238977024, 668688384, 1822679040, 4858183680, 12700876800, 32647938048, 82682707968, 206650736640, 510425825280, 1247438438400, 3019527684096, 7245593051136, 17248655769600
Offset: 0

Views

Author

Eric W. Weisstein, Aug 02 2023

Keywords

Crossrefs

Cf. A001788 (4-cycles).
Cf. A290031 (6-cycles).

Programs

  • Mathematica
    Table[Length[FindCycle[HypercubeGraph[n], {8}, All]], {n, 0, 9}]
    Table[2^(n - 4) n (n - 1) (n - 2) (27 n - 79), {n, 0, 20}]
    Table[3 2^(n - 3) Binomial[n, 3] (27 n - 79), {n, 0, 20}]
    LinearRecurrence[{10, -40, 80, -80, 32}, {0, 0, 0, 6, 696}, 20]
    CoefficientList[Series[6 x^3 (1 + 106 x)/(1 - 2 x)^5, {x, 0, 20}], x]

Formula

a(n) = 2^(n - 4)*n*(n - 1)*(n - 2)*(27*n - 79).
a(n) = 10*a(n-1) - 40*a(n-2) + 80*a(n-3) - 80*a(n-4) + 32*a(n-5).
G.f.: -6*x^3*(1 + 106*x)/(-1 + 2*x)^5.