A262587 "Special" prime powers in Serre's sense.
2, 3, 5, 7, 8, 13, 17, 31, 32, 37, 43, 73, 101, 128, 157, 197, 211, 241, 257, 307, 343, 401, 421, 463, 577, 601, 677, 757, 1123, 1297, 1483, 1601, 1723, 2048, 2187, 2551, 2917, 2971, 3137, 3307, 3541, 3907, 4357, 4423, 4831, 5113, 5477, 5701, 6007, 6163, 6481, 7057, 8011, 8101, 8191
Offset: 1
Keywords
References
- J. W. P. Hirschfeld, Linear codes and algebraic codes, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
- J.-P. Serre, Oeuvres, vol. 3, pp. 658-663 and 664-669.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- Jean-Pierre Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402.
- Jean-Pierre Serre, Nombres de points des courbe algebriques sur F_q, Sémin. Théorie Nombres Bordeaux, 1982/83, No. 22; Oeuvres, vol. 3, pp. 664-669.
Programs
-
Sage
for q in range(1, 1000): if Integer(q).is_prime_power(): p = Integer(q).prime_factors()[0] if (not Integer(q).is_square()): if ((floor(2*sqrt(q))%p == 0) or (q-1).is_square() or (4*q-3).is_square() or (4*q-7).is_square()): print(q) # Robin Visser, Aug 26 2023
Extensions
More terms from Robin Visser, Aug 26 2023
Comments