A364697 Lexicographically earliest permutation of the positive integers such that the successive cumulative products reproduce the sequence itself, digit by digit.
1, 11, 2, 25, 50, 27, 500, 7, 4, 2500, 3, 71, 250000, 259, 8, 750000, 10, 39, 5000000, 2598, 7500000000, 77, 9, 6, 2500000000, 5, 53, 533, 75000000001, 38, 383, 43, 75000000000000, 35, 84, 13, 103, 12, 5000000000000, 28, 67, 30, 48, 25000000000000000, 21, 504, 78, 61, 87
Offset: 1
Examples
a(1) = 1 a(1) * a(2) = 11 a(1) * a(2) * a(3) = 22 a(1) * a(2) * a(3) * a(4) = 550 a(1) * a(2) * a(3) * a(4) * a(5) = 27500 a(1) * a(2) * a(3) * a(4) * a(5) * a(6) = 742500; etc. The succession of the above results is: 1, 11, 22, 550, 27500, 742500, ... The first terms of the sequence are: 1, 11, 2, 25, 50, 27, 500, 7, 4, 2500,, ... We see that the successive digits are the same in the two sequences.
Links
- Eric Angelini, Cumulative Sums, Personal blog.
Programs
-
Mathematica
Nest[(a=#;AppendTo[a,(new=Flatten[IntegerDigits/@Table[Times@@a[[;;i]],{i,Length@a}]][[Length@Flatten[IntegerDigits/@a]+1;;]]; k=1;While[MemberQ[a,FromDigits@new[[;;k]]]||new[[k+1]]==0,k++];FromDigits@new[[;;k]])])&,{1,11,2,25},45] (* Giorgos Kalogeropoulos, Aug 05 2023 *)
Comments