cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364702 Numbers k in A361098 that are not divisible by A007947(k)^2.

Original entry on oeis.org

48, 50, 54, 75, 80, 96, 98, 112, 135, 147, 160, 162, 189, 192, 224, 240, 242, 245, 250, 252, 270, 294, 300, 320, 336, 338, 350, 352, 360, 363, 375, 378, 384, 396, 405, 416, 448, 450, 468, 480, 486, 490, 504, 507, 525, 528, 540, 550, 560, 567, 578, 588, 594, 600
Offset: 1

Views

Author

Michael De Vlieger, Aug 03 2023

Keywords

Comments

Subset of A126706, the set of numbers k neither prime powers nor squarefree, i.e., k such that A001222(k) > A001221(k) > 1.
Let p = A119288(k) be the second smallest prime factor of k. Let q = A053669(k) be the smallest prime that does not divide k. Let r = rad(k) = A007947(k) be the squarefree kernel of k. Define sequence S = A361098 = {k : Omega(k) > omega(k) > 1, q*r < k, p*r <= k} = A361098.
Sequence T = A286708 represents numbers in A001694 that are not prime powers. Numbers k in T are such that k = m*r^2, m >= 1, by definition. Since we may rewrite q*r < k instead as q*r < m*r^2, it is clear since omega(r) > 1, that q < r. Further, we may rewrite p*r <= k instead as p*r <= m*r^2, and since p | r, p < r as omega(r) > 1, we see that S contains T.
This sequence gives k that are in S but not in T.

Examples

			Let B = A126706.
B(1) = 12 is not in the sequence since 3*6 > 12.
B(2) = 18 is not in the sequence, since, though 3*6 = 18, 5*6 > 18.
B(6) = S(1) = 36 is not in the sequence since, though 3*6 < 36 and 5*6 < 36, rad(36)^2 = 6^2 | 36, hence B(6) = T(1).
B(10) = S(2) = a(1) = 48 is in the sequence since rad(48) = 6, and 6^2 does not divide 48.
B(11) = S(3) = a(2) = 50 is in the sequence since rad(50) = 10, and 10^2 does not divide 50, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^10; a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p]; s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; Reap[Do[n = s[[j]]; If[And[#1*a053669[n] < n, #1*#2 <= n, ! Divisible[n, #1^2]] & @@ {Times @@ #, #[[2]]} &@ FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}] ][[-1, -1]]

Formula

This sequence is A361098 \ A286708.