A364709 Triangle read by rows: T(n,k) is the number of forests of labeled rooted hypertrees with n vertices and weight k, 0 <= k < n.
1, 2, 1, 9, 9, 1, 64, 96, 28, 1, 625, 1250, 625, 75, 1, 7776, 19440, 14040, 3240, 186, 1, 117649, 352947, 336140, 120050, 14749, 441, 1, 2097152, 7340032, 8716288, 4300800, 870912, 61824, 1016, 1, 43046721, 172186884, 245525742, 156243654, 45605511, 5664330, 245025, 2295, 1
Offset: 1
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 ... 1 1; 2 2, 1; 3 9, 9, 1; 4 64, 96, 28, 1; 5 625, 1250, 625, 75, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
PARI
T(n) = my(x='x+O('x^(n+1))); [Vecrev(p) | p<-Vec(serlaplace( serreverse(log(1+x*y)*exp(-x)/y )))] {my(A=T(10)); for(n=1, #A, print(A[n]))} \\ Andrew Howroyd, Oct 20 2023
Formula
E.g.f: series reversion in t of (log(1+x*t)/x)*exp(-t).
T(n,0) = n^(n-1).
T(n,n-1) = 1.
Extensions
a(23) corrected by Andrew Howroyd, Jan 01 2024
Comments