cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364726 Admirable numbers with more divisors than any smaller admirable number.

Original entry on oeis.org

12, 24, 84, 120, 672, 24384, 43065, 78975, 81081, 261261, 523776, 9124731, 13398021, 69087249, 91963648, 459818240, 39142675143, 51001180160
Offset: 1

Views

Author

Amiram Eldar, Aug 05 2023

Keywords

Comments

The corresponding numbers of divisors are 6, 8, 12, 16, 24, 28, 32, 36, 40, 48, 80, 90, 96, 120, 144, 288, 360, 480, ... .
If there are infinitely many even perfect numbers (A000396), then this sequence is infinite, because if p is a Mersenne prime exponent (A000043) and q is an odd prime that does not divide 2^p-1, then 2^(p-1)*(2^p-1)*q is an admirable number with 4*p divisors (see A165772).
a(19) > 10^11.

Crossrefs

Programs

  • Mathematica
    admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
  • PARI
    isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0;}
    lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k,", ")));}