cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380933 Numbers k such that k and k+1 are both in A380929.

Original entry on oeis.org

121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1).

Examples

			121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
		

Crossrefs

Subsequence of A096399 and A380929.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
    seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
    seq[3*10^8]
  • PARI
    isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
    list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));

A364975 Admirable numbers (A111592) with a record gap to the next admirable number.

Original entry on oeis.org

12, 30, 42, 88, 120, 140, 186, 534, 678, 6774, 7962, 77118, 94108, 152826, 478194, 662154, 935564, 1128174, 2028198, 6934398, 7750146, 8330924, 9984738, 10030804, 22956114, 62062566, 151040622, 284791602, 732988732, 804394974, 1151476732, 9040886574, 31302713634
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

The corresponding record gaps are 8, 10, 12, 14, 18, 34, 36, 48, 84, 132, 204, 216, 254, 312, 348, 360, 392, 468, 516, 528, 552, 598, 624, 638, 828, 852, 936, 1056, 1082, 1128, 1454, 1692, 1752, ... .

Examples

			The first 5 admirable numbers are 12, 20, 24, 30 and 40. The differences between these terms are 8, 4, 6 and 10. The record gaps, 8 and 10, occur after the terms 12 and 30, which are the first two terms of this sequence.
		

Crossrefs

Similar sequences: A306953, A330870, A334418, A334419, A334883, A363296.

Programs

  • Mathematica
    admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
    seq[kmax_] := Module[{s = {}, m = 12, dm = 0}, Do[If[admQ[k], d = k - m; If[d > dm, dm = d; AppendTo[s, m]]; m = k], {k, m + 1, kmax}]; s]; seq[10^6]
  • PARI
    isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0; }
    lista(kmax) = {my(m = 12, dm = 0); for(k = m+1, kmax, if(isadm(k), d = k - m; if(d > dm, dm = d; print1(m, ", ")); m = k));}
Showing 1-2 of 2 results.