A364755 Number of subsets of {1..n} containing n but not containing the sum of any two distinct elements.
0, 1, 2, 3, 6, 9, 15, 24, 41, 60, 99, 149, 236, 355, 552, 817, 1275, 1870, 2788, 4167, 6243, 9098, 13433, 19718, 28771, 42137, 60652, 88603, 127555, 185200, 261781, 382931, 541022, 783862, 1096608, 1595829, 2217467, 3223064, 4441073, 6465800, 8893694
Offset: 0
Keywords
Examples
The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is counted under a(8). The a(1) = 1 through a(6) = 15 subsets: {1} {2} {3} {4} {5} {6} {1,2} {1,3} {1,4} {1,5} {1,6} {2,3} {2,4} {2,5} {2,6} {3,4} {3,5} {3,6} {1,2,4} {4,5} {4,6} {2,3,4} {1,2,5} {5,6} {1,3,5} {1,2,6} {2,4,5} {1,3,6} {3,4,5} {1,4,6} {2,3,6} {2,5,6} {3,4,6} {3,5,6} {4,5,6} {3,4,5,6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..75
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,10}]
Formula
First differences of A085489.
Extensions
a(21) onwards added (using A085489) by Andrew Howroyd, Jan 13 2024