A364786 We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.
19, 7, 112, 11123, 1111222, 111111245666689, 1111133333333335, 1111122333333333333333333346677777777888, 22222222222222222226666668888888, 233444445555555555555555555555555555555555555555555577, 1222222222233333333333333444444444455555555555555556666666666666666666666677778888889
Offset: 1
Examples
a(1) = 19 since 1^1 + 9^1 = 10 and 1^1 + 0^1 = 1. a(3) = 112 since 1^3 + 1^3 + 2^3 = 10 and 1^3 + 0^3 = 1.
Extensions
a(6), a(8), and a(9) corrected by, and a(10) and a(11) from Jon E. Schoenfield, Aug 10 2023
Definition clarified by N. J. A. Sloane, Sep 15 2023
Comments