cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364747 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)).

Original entry on oeis.org

1, 1, 5, 32, 234, 1854, 15490, 134380, 1198944, 10931761, 101412677, 954155059, 9083120975, 87326765375, 846709605539, 8269910074087, 81291388929027, 803592049667495, 7983612883739843, 79671910265120574, 798283229227457304, 8027625597750959053
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n-3*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=1, t=4, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-3*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 05 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). (End)

A371888 G.f. A(x) satisfies A(x) = 1 - x/A(x) * (1 - A(x) - A(x)^2).

Original entry on oeis.org

1, 1, 2, 3, 3, 1, -2, -1, 10, 25, 12, -65, -151, -7, 588, 1083, -437, -5247, -7732, 7943, 47503, 53793, -105312, -430117, -343042, 1249801, 3866558, 1730019, -13996095, -34243895, -1947202, 150962375, 296101866, -121857183, -1582561868, -2468098041, 2529520767
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-2*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-2*k,n-k-1) for n > 0.
a(n) = (1/2) * Sum_{k=0..n} 4^k * binomial(k/2+1/2,k) * binomial(n-1,n-k)/(k+1) for n > 0.
G.f.: A(x) = 2*x/(1+x - sqrt(1-2*x+5*x^2)).
D-finite with recurrence n*a(n) +3*(-n+1)*a(n-1) +(7*n-18)*a(n-2) +5*(-n+3)*a(n-3)=0. - R. J. Mathar, Apr 22 2024
Showing 1-2 of 2 results.