A364812 Triangle of generalized binomial coefficients T(n,k) = ff(n)/(ff(k)*ff(n-k)) where ff(n) = A363838(n), the generalized factorial.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 16, 24, 16, 1, 1, 5, 40, 40, 5, 1, 1, 36, 90, 480, 90, 36, 1, 1, 7, 126, 210, 210, 126, 7, 1, 1, 256, 896, 10752, 3360, 10752, 896, 256, 1, 1, 81, 10368, 24192, 54432, 54432, 24192, 10368, 81, 1, 1, 100, 4050, 345600, 151200, 1088640, 151200, 345600, 4050, 100, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 16, 24, 16, 1; 1, 5, 40, 40, 5, 1; 1, 36, 90, 480, 90, 36, 1; ...
Links
- Michel Marcus, Table of n, a(n) for n = 0..5150 (Rows n=0..100 flattened).
- Jeffrey C. Lagarias and Wijit Yangjit, The factorial function and generalizations, extended, arXiv:2310.12949 [math.NT], 2023. See Table 3 p. 30.
Programs
-
PARI
f(n, b) = sum(i=1, logint(n, b), n\b^i); ff(n) = prod(b=2, n, b^f(n,b)); \\ A363838 T(n,k) = ff(n)/(ff(k)*ff(n-k)); row(n) = vector(n+1, k, T(n, k-1));