A364813 a(n) = Product_{k=2..n} k^ord(n, k) where ord(n, k) = 0 if k does not divide n, otherwise ord(n, k) = e where e is such that k^e divides n but k^(e + 1) does not.
1, 2, 3, 16, 5, 36, 7, 256, 81, 100, 11, 3456, 13, 196, 225, 32768, 17, 17496, 19, 16000, 441, 484, 23, 1327104, 625, 676, 6561, 43904, 29, 810000, 31, 2097152, 1089, 1156, 1225, 362797056, 37, 1444, 1521, 10240000, 41, 3111696, 43, 170368, 273375, 2116, 47, 8153726976, 2401, 625000
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
- Jeffrey C. Lagarias and Wijit Yangjit, The factorial function and generalizations, extended, arXiv:2310.12949 [math.NT], 2023. See Section 7.2 pp. 20-21 and Table 1 p. 29.
- Wikipedia, p-adic valuation.
Programs
-
Maple
with(padic): a := n -> local k; mul(k^ordp(n, k), k = 2.. n): seq(a(n), n = 1..50); # Peter Luschny, Apr 01 2025
-
Mathematica
Table[Product[k^IntegerExponent[n, k], {k, 2, n}], {n, 1, 50}] (* Peter Luschny, Apr 01 2025 *)
-
PARI
f(n, b) = sum(i=1, logint(n, b), n\b^i); d(n,b) = f(n,b)-f(n-1,b); a(n) = prod(b=2, n, b^d(n,b));
Formula
a(n) = Product_{b=2..n} b^d(n, b) where d(n, b) = gamma(n, b) - gamma(n-1, b) and gamma(n, b) = Sum_{i>=1} floor(n/b^i).
Extensions
More explicit name from Peter Luschny, Apr 01 2025
Comments