cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366345 Decimal expansion of y such that Gamma(A364821 + i*sqrt(1-A364821^2)) = -y*i.

Original entry on oeis.org

5, 3, 7, 7, 0, 0, 3, 8, 8, 7, 8, 3, 5, 2, 9, 5, 9, 1, 9, 0, 4, 6, 0, 0, 7, 9, 5, 7, 7, 3, 9, 5, 0, 2, 5, 5, 4, 9, 4, 4, 2, 7, 7, 5, 6, 1, 7, 4, 1, 5, 9, 3, 2, 4, 2, 7, 3, 9, 7, 1, 3, 6, 0, 9, 0, 6, 1, 3, 8, 3, 9, 6, 2, 6, 6, 4, 4, 9, 0, 7, 5, 7, 0, 0, 3, 2, 2, 4, 8, 3, 1, 8, 7, 3, 4, 8, 5, 6, 0, 0, 4, 6, 7, 5, 0, 3
Offset: 0

Views

Author

Artur Jasinski, Oct 07 2023

Keywords

Comments

x = A364821 = 0.149965974606491089853... is the only real number x such that Gamma(x + i*sqrt(1-x^2)) is an imaginary number and -1 < x < 1.

Examples

			Gamma(A364821 + i*sqrt(1-A364821^2)) = -i*0.5377003887835295919046...
		

Crossrefs

A364356 Decimal expansion of negative value of function Gamma(-A364355 + i*sqrt(1-A364355^2)).

Original entry on oeis.org

6, 7, 4, 9, 3, 3, 2, 4, 7, 0, 4, 4, 9, 9, 0, 5, 9, 6, 3, 5, 3, 1, 0, 0, 4, 4, 6, 9, 5, 4, 7, 2, 2, 1, 6, 4, 2, 5, 3, 7, 4, 9, 7, 5, 6, 2, 7, 7, 8, 7, 6, 6, 1, 1, 9, 2, 8, 7, 3, 0, 3, 2, 8, 9, 4, 1, 0, 6, 4, 8, 6, 5, 9, 1, 9, 3, 3, 5, 3, 9, 9, 3, 9, 1, 4, 4, 2, 1, 3, 1, 4, 1, 5, 6, 8, 0, 9, 1, 6, 2, 0, 6, 7, 9, 7
Offset: 0

Views

Author

Artur Jasinski, Aug 08 2023

Keywords

Comments

Only for x = A364355 = 0.54197987169489060244332278779... the Gamma(-x + i*sqrt(1-x^2)) is a real number and -1 < x < 1 (for one case is an imaginary number see A364821 and for other values x is a complex number).

Examples

			Gamma(-A364355 + i*sqrt(1-A364355^2)) = -0.6749332470449905963531...
		

Crossrefs

Programs

  • Mathematica
    xmin=x /. FindRoot[Im[Gamma[-x + I Sqrt[1 - x^2]]], {x, 0.5}, WorkingPrecision -> 106];RealDigits[Re[-Gamma[-x + I Sqrt[1 - x^2]]/. x->xmin]][[1]]

A366545 Decimal expansion of the value x for which the function Re(Gamma(-x + i*sqrt(1-x^2))) is minimized for -1 < x < 1.

Original entry on oeis.org

9, 5, 6, 5, 1, 3, 0, 9, 0, 3, 4, 6, 6, 5, 4, 5, 6, 5, 6, 0, 3, 6, 3, 6, 6, 0, 1, 5, 9, 2, 5, 6, 5, 4, 4, 4, 9, 3, 0, 6, 8, 3, 2, 2, 6, 1, 4, 9, 5, 4, 1, 1, 1, 2, 5, 7, 6, 3, 2, 8, 7, 6, 6, 0, 5, 4, 8, 0, 3, 1, 9, 7, 3, 5, 7, 6, 8, 6, 8, 6, 5, 1, 2, 3, 6, 0, 9, 8, 4, 8, 5, 7, 1, 4, 0, 0, 7, 5, 2, 8, 1, 9, 9, 9, 1, 7
Offset: 0

Views

Author

Artur Jasinski, Oct 12 2023

Keywords

Comments

For Re(Gamma(-A366545 + i*sqrt(1-A366545^2))) = -0.930840199... see A366545.

Examples

			0.9565130903466545656...
		

Crossrefs

Programs

  • Mathematica
    xmin = Re[x /. FindRoot[1/(2 Sqrt[1 - x^2]) I (Gamma[1 + x - I Sqrt[1 - x^2]] PolyGamma[0, x - I Sqrt[1 - x^2]] - Gamma[1 + x + I Sqrt[1 - x^2]] PolyGamma[0,
             x + I Sqrt[1 - x^2]]), {x, -0.98}, WorkingPrecision -> 110]];
     RealDigits[xmin, 10, 106][[1]]
Showing 1-3 of 3 results.