A364839 Number of strict integer partitions of n such that some part can be written as a nonnegative linear combination of the others.
0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 7, 7, 12, 12, 17, 20, 26, 29, 39, 43, 54, 62, 77, 88, 107, 122, 148, 168, 200, 229, 267, 308, 360, 407, 476, 536, 623, 710, 812, 917, 1050, 1190, 1349, 1530, 1733, 1944, 2206, 2483, 2794, 3138, 3524
Offset: 0
Keywords
Examples
For y = (4,3,2) we can write 4 = 0*3 + 2*2, so y is counted under a(9). For y = (11,5,3) we can write 11 = 1*5 + 2*3, so y is counted under a(19). For y = (17,5,4,3) we can write 17 = 1*3 + 1*4 + 2*5, so y is counted under a(29). The a(1) = 0 through a(12) = 12 strict partitions (A = 10, B = 11): . . (21) (31) (41) (42) (61) (62) (63) (82) (A1) (84) (51) (421) (71) (81) (91) (542) (93) (321) (431) (432) (532) (632) (A2) (521) (531) (541) (641) (B1) (621) (631) (731) (642) (721) (821) (651) (4321) (5321) (732) (741) (831) (921) (5421) (6321)
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[combs[#[[k]], Delete[#,k]]!={}, {k,Length[#]}]&]],{n,0,15}]
-
Python
from sympy.utilities.iterables import partitions def A364839(n): if n <= 1: return 0 alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0 for p in partitions(n,k=n-1): if max(p.values(),default=0)==1: s = set(p) if any(set(t).issubset(s-{q}) for q in s for t in alist[q]): c += 1 return c # Chai Wah Wu, Sep 23 2023