A364861 Numbers k such that k and k+1 are both S-abundant numbers (A181487).
5984, 7424, 21944, 39375, 56924, 77175, 82004, 84524, 89775, 109395, 116655, 158235, 174824, 180495, 185535, 188055, 193544, 200024, 209055, 235935, 238095, 240344, 245024, 250964, 256095, 261260, 262184, 263024, 266475, 279279, 282975, 283815, 294975, 297296
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jean-Marie De Koninck and Aleksandar Ivić, On a sum of divisors problem, Publications de l'Institut Mathématique (Beograd), New Series, Vol. 64 (78) (1998), pp. 9-20.
- Wikipedia, Granville number.
Programs
-
Mathematica
seq[kmax_] := Module[{s = {1}, a = {}, sum, q1 = False, q2}, Do[sum = Total[Select[Divisors[k], MemberQ[s, #] &]]; q2 = sum > k; If[!q2, AppendTo[s, k]]; If[q1 && q2, AppendTo[a, k-1]]; q1 = q2, {k, 2, kmax}]; a]; seq[40000]
-
PARI
lista(nmax) = {my(c = 0, s, q1 = 0, q2); for(n=2, nmax, if(sumdiv(n, d, !bittest(c, d)*d) > 2*n, c+=1<
M. F. Hasler at A181487
Comments