cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364870 Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0

Views

Author

Stefano Spezia, Aug 11 2023

Keywords

Examples

			The array begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,    9,    16,    25,    36,     49, ...
    27,   64,   125,   216,   343,    512, ...
   256,  625,  1296,  2401,  4096,   6561, ...
  3125, 7776, 16807, 32768, 59049, 100000, ...
  ...
		

Crossrefs

Cf. A000012 (n=0), A000169, A000272, A000312 (k=0), A007830 (k=3), A008785 (k=4), A008786 (k=5), A008787 (k=6), A031973 (antidiagonal sums), A052746 (2nd superdiagonal), A052750, A062971 (main diagonal), A079901 (read by descending antidiagonals), A085527 (1st superdiagonal), A085528 (1st subdiagonal), A085532, A099753.

Programs

  • Mathematica
    A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten

Formula

E.g.f. of k-th column: LambertW(-x)^k/(x^k*(1 + LambertW(-x))).