A364879 a(n) is the smallest number k such that (sum of composites <= k) / (sum of primes <= k) >= n.
2, 6, 10, 28, 126, 520, 1394, 4440, 11765, 35702, 98202, 271718, 736814, 2012631, 5478367, 14867499, 40448112, 109944053, 298170203, 810416222, 2200884471, 5980529528
Offset: 0
Examples
Let Sp(k) and Sc(k) be the sums of the primes <= k and the composites <= k, respectively. Then the sums and ratios begin as follows: . k | Sp(k) | Sc(k) | Sc(k)/Sp(k) ---+-------+-------+------------ 1 | 0 | 0 | (undefined) 2 | 2 | 0 | 0/2 = 0 so a(0) = 2 3 | 5 | 0 | 0/5 = 0 4 | 5 | 4 | 4/5 = 0.8 5 | 10 | 4 | 4/10 = 0.4 6 | 10 | 10 | 10/10 = 1 so a(1) = 6 7 | 17 | 10 | 10/17 = 0.5882... 8 | 17 | 18 | 18/17 = 1.0588... 9 | 17 | 27 | 27/17 = 1.5882... 10 | 17 | 37 | 37/17 = 2.1764... so a(2) = 10
Programs
-
Python
from itertools import count from sympy import isprime def A364879(n): c, cn, m = 0, 0, n+1<<1 for k in count(2): if isprime(k): c += k cn += k*m if k*(k+1)-1 >= cn: return k # Chai Wah Wu, Sep 10 2023
Formula
a(n) = min {k : (Sum_{c<=k, c composite} c)/(Sum_{p<=k, p prime} p) >= n}.
a(n) = min {k>1 : k(k+1)-1>=2*A034387(k)*(n+1)}. - Chai Wah Wu, Sep 10 2023
Extensions
a(17)-a(21) from Chai Wah Wu, Sep 10 2023
Comments