A364881 First significant digit of the decimal expansion of n/(2^n).
5, 5, 3, 2, 1, 9, 5, 3, 1, 9, 5, 2, 1, 8, 4, 2, 1, 6, 3, 1, 1, 5, 2, 1, 7, 3, 2, 1, 5, 2, 1, 7, 3, 1, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 7, 3, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 3, 1, 7, 3, 1, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5
Offset: 1
Examples
n n/(2^n) 1 0.5 a(1) = 5 2 0.5 a(2) = 5 3 0.375 a(3) = 3 4 0.25 a(4) = 2 5 0.15625 a(5) = 1 6 0.9375 a(6) = 9 7 0.0546875 a(7) = 5 8 0.03125 a(8) = 3 9 0.017578125 a(9) = 1 10 0.009765625 a(10) = 9 ...
Programs
-
Maple
a:= n-> parse((""||(n*5^n))[1]): seq(a(n), n=1..100); # Alois P. Heinz, Aug 18 2023
-
Mathematica
Table[Floor[n/(2^n)/10^Floor[Log10[n/(2^n)]]], {n, 100000}]
-
Python
def A364881(n): return (n*5**(m:=len(str((1<
>n-m) % 10 # Chai Wah Wu, Aug 24 2023
Comments