cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364901 The n-volume of the unit regular n-simplex is sqrt(A364900(n))/a(n), with A364900(n) being squarefree.

Original entry on oeis.org

1, 1, 4, 12, 96, 480, 5760, 20160, 215040, 5806080, 116121600, 1277337600, 30656102400, 398529331200, 11158821273600, 83691159552000, 5356234211328000, 30351993864192000, 3278015337332736000, 62282291409321984000, 2491291656372879360000, 52317124783830466560000
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Examples

			  n |  the n-volume of the
    | unit regular n-simplex
  2 |  sqrt(3)/4 = A120011
  3 |  sqrt(2)/12 = A020829
  4 |  sqrt(5)/96 = A364895
  5 |  sqrt(3)/480
  6 |  sqrt(7)/5760
  7 |        1/20160
  8 |        1/215040
  9 |  sqrt(5)/5806080
		

Crossrefs

Programs

  • PARI
    A000188(n) = sqrtint(n/core(n));
    a(n) = n! * if(n%2, 2^((n-1)/2)/A000188((n+1)/2), 2^(n/2)/A000188(n+1))

Formula

The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = n! * 2^(n/2) / A000188(n+1) for even n and n! * 2^((n-1)/2) / A000188((n+1)/2) for odd n. It's easy to see that a(n) is an integer.