A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.
1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 12, 10, 16, 16, 19, 21, 29, 25, 37, 35, 44, 46, 60, 55, 75, 71, 90, 90, 114, 110, 140, 138, 167, 163, 217, 201, 248, 241, 298, 303, 359, 355, 425, 422, 520, 496, 594, 603, 715, 706, 834, 826, 968, 972, 1153, 1147, 1334, 1315, 1530
Offset: 0
Keywords
Examples
The a(1) = 1 through a(10) = 8 partitions (A=10): 1 2 3 4 5 6 7 8 9 A 11 111 22 32 33 43 44 54 55 1111 11111 222 52 53 72 64 111111 322 332 333 73 1111111 2222 522 433 11111111 3222 3322 111111111 22222 1111111111 The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12). The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15).
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}]
-
Python
from sympy.utilities.iterables import partitions def A364915(n): if n <= 1: return 1 alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1 for p in partitions(n,k=n-1): s = set(p) if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]): c += 1 return c # Chai Wah Wu, Sep 23 2023
Extensions
a(37)-a(59) from Chai Wah Wu, Sep 25 2023