A369374
Powerful numbers k that have a primorial kernel and more than 1 distinct prime factor.
Original entry on oeis.org
36, 72, 108, 144, 216, 288, 324, 432, 576, 648, 864, 900, 972, 1152, 1296, 1728, 1800, 1944, 2304, 2592, 2700, 2916, 3456, 3600, 3888, 4500, 4608, 5184, 5400, 5832, 6912, 7200, 7776, 8100, 8748, 9000, 9216, 10368, 10800, 11664, 13500, 13824, 14400, 15552, 16200
Offset: 1
This sequence is the union of the following infinite sets:
P(2)^2 * A003586 = {36, 72, 108, 144, 216, 288, 324, ...}
= { m*P(2)^2 : rad(m) | P(2) }.
P(3)^2 * A051037 = {900, 1800, 2700, 3600, 4500, 5400, ...}
= { m*P(3)^2 : rad(m) | P(3) }.
P(4)^2 * A002473 = {44100, 88200, 132300, 176400, ...}
= { m*P(4)^2 : rad(m) | P(4) }, etc.
Cf.
A001221,
A001222,
A001694,
A002110,
A007947,
A055932,
A126706,
A286708,
A364930,
A367268,
A369417.
-
With[{nn = 2^14},
Select[
Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
Not@*PrimePowerQ],
And[EvenQ[#],
Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] ]
A368508
Powers of superprimorials S(k)^m such that both k > 1 and m > 1, where S(n) = A006939(n).
Original entry on oeis.org
144, 1728, 20736, 129600, 248832, 2985984, 35831808, 46656000, 429981696, 5159780352, 5715360000, 16796160000, 61917364224, 743008370688, 6046617600000, 8916100448256, 106993205379072, 432081216000000, 1283918464548864, 2176782336000000, 15407021574586368, 30497732496000000
Offset: 1
-
nn = 2^120; k = 2; P = 6; Q = 2 P; Union@ Reap[While[j = 2; While[Q^j < nn, Sow[Q^j]; j++]; j > 2, k++; P *= Prime[k]; Q *= P] ][[-1, 1]]
A378002
Achilles numbers that are products of primorials.
Original entry on oeis.org
72, 288, 432, 864, 1152, 1800, 2592, 3456, 4608, 5400, 6912, 7200, 10368, 10800, 15552, 18432, 21600, 27648, 28800, 31104, 41472, 43200, 54000, 55296, 62208, 64800, 73728, 86400, 88200, 93312, 108000, 115200, 124416, 162000, 165888, 172800, 194400, 221184, 259200
Offset: 1
Prime power decomposition of the first 12 terms:
a(1) = 72 = 2^3 * 3^2
a(2) = 288 = 2^5 * 3^2
a(3) = 432 = 2^4 * 3^3
a(4) = 864 = 2^5 * 3^3
a(5) = 1152 = 2^7 * 3^2
a(6) = 1800 = 2^3 * 3^2 * 5^2
a(7) = 2592 = 2^5 * 3^4
a(8) = 3456 = 2^7 * 3^3
a(9) = 4608 = 2^9 * 3^2
a(10) = 5400 = 2^3 * 3^3 * 5^2
a(11) = 6912 = 2^8 * 3^3
a(12) = 7200 = 2^5 * 3^2 * 5^2
-
(* First load function f in A025487, then: *)
Select[Rest@ Union@ Flatten@ f[14],
And[Divisible[#, Apply[Times, #2[[All, 1]] ]^2],
GCD @@ #2[[All, -1]] == 1] & @@ {#, FactorInteger[#]} &]
A386223
Nonsquarefree weak numbers k that are products of primorials.
Original entry on oeis.org
12, 24, 48, 60, 96, 120, 180, 192, 240, 360, 384, 420, 480, 720, 768, 840, 960, 1080, 1260, 1440, 1536, 1680, 1920, 2160, 2520, 2880, 3072, 3360, 3840, 4320, 4620, 5040, 5760, 6144, 6300, 6480, 6720, 7560, 7680, 8640, 9240, 10080, 11520, 12288, 12600, 12960, 13440
Offset: 1
Table of n, a(n) and prime decomposition for n = 1..12:
n a(n) prime decomposition
------------------------------
1 12 2^2 * 3
2 24 2^3 * 3
3 48 2^4 * 3
4 60 2^2 * 3 * 5
5 96 2^5 * 3
6 120 2^3 * 3 * 5
7 180 2^2 * 3^2 * 5
8 192 2^6 * 3
9 240 2^4 * 3 * 5
10 360 2^3 * 3^2 * 5
11 384 2^7 * 3
12 420 2^2 * 3 * 5 * 7
Cf.
A001694,
A002110,
A007947,
A052485,
A025487,
A055932,
A126706,
A286708,
A332785,
A364930,
A380543.
-
(* Load May 19 2018 function f at A025487, then run the following: *)
rad[x_] := Times @@ FactorInteger[x][[All, 1]]; Select[Union@ Flatten[f[6][[3 ;; -1, 2 ;; -1]] ], ! Divisible[#, rad[#]^2] &]
A368507
Powers of superprimorials.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 32, 64, 128, 144, 256, 360, 512, 1024, 1728, 2048, 4096, 8192, 16384, 20736, 32768, 65536, 75600, 129600, 131072, 248832, 262144, 524288, 1048576, 2097152, 2985984, 4194304, 8388608, 16777216, 33554432, 35831808, 46656000, 67108864, 134217728
Offset: 1
Powers of 2 are in the sequence since 2 = P(1).
Powers of 12 are terms, since 12 = P(1)*P(2).
Powers of 360 are terms, since 360 = P(1)*P(2)*P(3), etc.
-
nn = 2^60; k = 1; P = 2; Q = 2; {1}~Join~Union@ Reap[While[j = 1; While[Q^j < nn, Sow[Q^j]; j++]; j > 1, k++; P *= Prime[k]; Q *= P] ][[-1, 1]]
A369420
Powerful numbers k that are not prime powers, such that k has a primorial kernel but is not a product of primorials.
Original entry on oeis.org
108, 324, 648, 972, 1944, 2700, 2916, 3888, 4500, 5832, 8100, 8748, 9000, 11664, 13500, 16200, 17496, 18000, 22500, 23328, 24300, 26244, 34992, 36000, 40500, 45000, 48600, 52488, 67500, 69984, 72000, 72900, 78732, 81000, 90000, 97200, 104976, 112500, 121500, 132300
Offset: 1
36 = 2^2 * 3^2 is a product of primorials, therefore not in the sequence.
72 = 2^3 * 3^2 is not a term because it is a product of primorials.
100 = 2^2 * 5^2 is not in the sequence since it does not have a primorial kernel.
108 = 2^2 * 3*3 is in the sequence since it is not a product of primorials, but its squarefree kernel is 6, a primorial.
144 = 2^4 * 3^2 is not in the sequence since it is a product of primorials, etc.
-
With[{nn = 2^20},
Select[
Select[
Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
Not@*PrimePowerQ],
And[EvenQ[#1],
Union@ Differences@ PrimePi[#2[[All, 1]]] == {1}, !
AllTrue[Differences@ #2[[All, -1]], # <= 0 &]] & @@
{#, FactorInteger[#]} &] ]
Showing 1-6 of 6 results.
Comments