A364932 a(n) = phi(psi(n)).
1, 2, 2, 2, 2, 4, 4, 4, 4, 6, 4, 8, 6, 8, 8, 8, 6, 12, 8, 12, 16, 12, 8, 16, 8, 12, 12, 16, 8, 24, 16, 16, 16, 18, 16, 24, 18, 16, 24, 24, 12, 32, 20, 24, 24, 24, 16, 32, 24, 24, 24, 24, 18, 36, 24, 32, 32, 24, 16, 48, 30, 32, 32, 32, 24, 48, 32, 36, 32, 48, 24
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local p; numtheory:-phi(n * mul(1+1/p, p = numtheory:-factorset(n))) end proc: map(f, [$1..100]); # Robert Israel, Feb 13 2024
-
Mathematica
a[n_] := EulerPhi[n*Times @@ (1 + 1/FactorInteger[n][[;; , 1]])]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)
-
PARI
a(n) = eulerphi(n * sumdivmult(n, d, issquarefree(d)/d)); \\ Michel Marcus, Aug 13 2023
-
Python
from sympy.ntheory.factor_ import totient from sympy import isprime, primefactors, prod def psi(n): plist = primefactors(n) return n*prod(p+1 for p in plist)//prod(plist) def a(n): return totient(psi(n))
Comments