A364944 Order of Aut^4(C_n) = Aut(Aut(Aut(Aut(C_n)))), where C_n is the cyclic group of order n.
1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 6, 6, 1, 8, 8, 8, 1, 1, 8, 12, 1, 2, 336, 8, 6, 1, 12, 12, 8, 8, 384, 144, 8, 384, 12, 12, 1, 384, 4608, 1152, 12, 12, 144, 384, 2, 4, 4608, 12, 8, 1536, 384, 64, 1, 2359296, 336, 144, 12, 12, 4608, 1152, 8, 13824, 1536, 36864, 144, 24
Offset: 1
Examples
For n = 69, we have Aut(C_69) = C_2 X C_22, Aut^2(C_69) = C_10 X S_3, Aut^3(C_69) = C_4 X D_12 and Aut^4(C_69) = SmallGroup(32,27) X S_3, so a(69) = |SmallGroup(32,27) X S_3| = 192. For n = 972, we have Aut(C_972) = C_2 X C_162, Aut^2(C_972) = C_18 X D_12, Aut^3(C_972) = C_6 X S_3 X S_4 and Aut^4(C_972) = C_2 X C_2 X D_12 X S_4, so a(972) = |C_2 X C_2 X D_12 X S_4| = 1152. For n = 1029, we have Aut(C_1029) = C_2 X C_294, Aut^2(C_1029) = C_42 X D_12, Aut^3(C_1029) = C_6 X D_12 X S_4 and Aut^4(C_1029) = D_12 X S_4 X SmallGroup(96,227), so a(1029) = |D_12 X S_4 X SmallGroup(96,227)| = 27648. For n = 1944, we have Aut(C_1944) = C_2 X C_2 X C_162, Aut^2(C_1944) = C_2 X C_18 X PSL(2,7), Aut^3(C_1944) = C_6 X S_3 X PGL(2,7) and Aut^4(C_1944) = C_2 X C_2 X D_12 X PGL(2,7), so a(1944) = |C_2 X C_2 X D_12 X PGL(2,7)| = 16128.
Links
- Jianing Song, Table of n, a(n) for n = 1..159
Crossrefs
Programs
-
GAP
A364944 := function(n) local G, i, L; G := CyclicGroup(n); for i in [1..4] do G := AutomorphismGroup(G); if i = 4 then return Size(G); fi; L := DirectFactorsOfGroup(G); if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then L := List(L, x->IdGroup(x)); G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available fi; od; end; # it should be noted that the calculation of Aut^4(C_n) can by extremely lengthy for even small n (for example n = 80)