cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364944 Order of Aut^4(C_n) = Aut(Aut(Aut(Aut(C_n)))), where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 6, 6, 1, 8, 8, 8, 1, 1, 8, 12, 1, 2, 336, 8, 6, 1, 12, 12, 8, 8, 384, 144, 8, 384, 12, 12, 1, 384, 4608, 1152, 12, 12, 144, 384, 2, 4, 4608, 12, 8, 1536, 384, 64, 1, 2359296, 336, 144, 12, 12, 4608, 1152, 8, 13824, 1536, 36864, 144, 24
Offset: 1

Views

Author

Jianing Song, Aug 14 2023

Keywords

Examples

			For n = 69, we have Aut(C_69) = C_2 X C_22, Aut^2(C_69) = C_10 X S_3, Aut^3(C_69) = C_4 X D_12 and Aut^4(C_69) = SmallGroup(32,27) X S_3, so a(69) = |SmallGroup(32,27) X S_3| = 192.
For n = 972, we have Aut(C_972) = C_2 X C_162, Aut^2(C_972) = C_18 X D_12, Aut^3(C_972) = C_6 X S_3 X S_4 and Aut^4(C_972) = C_2 X C_2 X D_12 X S_4, so a(972) = |C_2 X C_2 X D_12 X S_4| = 1152.
For n = 1029, we have Aut(C_1029) = C_2 X C_294, Aut^2(C_1029) = C_42 X D_12, Aut^3(C_1029) = C_6 X D_12 X S_4 and Aut^4(C_1029) = D_12 X S_4 X SmallGroup(96,227), so a(1029) = |D_12 X S_4 X SmallGroup(96,227)| = 27648.
For n = 1944, we have Aut(C_1944) = C_2 X C_2 X C_162, Aut^2(C_1944) = C_2 X C_18 X PSL(2,7), Aut^3(C_1944) = C_6 X S_3 X PGL(2,7) and Aut^4(C_1944) = C_2 X C_2 X D_12 X PGL(2,7), so a(1944) = |C_2 X C_2 X D_12 X PGL(2,7)| = 16128.
		

Crossrefs

Cf. A000010 (order of Aut(C_n)), A258615 (order of Aut^2(C_n)), A364129 (order of Aut^3(C_n)), A364917 (order of Aut^k(C_n) for all sufficiently large k).

Programs

  • GAP
    A364944 := function(n)
    local G, i, L;
    G := CyclicGroup(n);
    for i in [1..4] do
    G := AutomorphismGroup(G);
    if i = 4 then return Size(G); fi;
    L := DirectFactorsOfGroup(G);
    if List(L, x->IdGroupsAvailable(Size(x))) = List(L, x->true) then
    L := List(L, x->IdGroup(x));
    G := DirectProduct(List(L, x->SmallGroup(x))); # It's more efficient to operate on abstract groups when the abstract structure is available
    fi; od; end;
    # it should be noted that the calculation of Aut^4(C_n) can by extremely lengthy for even small n (for example n = 80)