A364967 Number T(n,k) of permutations of [n] for which the difference between the longest and the shortest cycle length is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
1, 1, 2, 3, 3, 10, 6, 8, 25, 45, 20, 30, 176, 60, 250, 90, 144, 721, 861, 770, 1344, 504, 840, 6406, 1778, 7980, 6300, 8736, 3360, 5760, 42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360, 436402, 84150, 363680, 456120, 708048, 378000, 572400, 226800, 403200
Offset: 0
Examples
T(4,0) = 10: (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432). T(4,1) = 6: (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), (14)(2)(3). T(4,2) = 8: (1)(234), (1)(243), (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2). Triangle T(n,k) begins: 1; 1; 2; 3, 3; 10, 6, 8; 25, 45, 20, 30; 176, 60, 250, 90, 144; 721, 861, 770, 1344, 504, 840; 6406, 1778, 7980, 6300, 8736, 3360, 5760; 42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add( b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1)*(j-1)!, j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)): seq(T(n), n=0..12);
-
Mathematica
b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]; T[n_] := CoefficientList[b[n, n, 0], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)
Formula
T(n,k) == 0 (mod k!).
Sum_{k=0..max(0,n-2)} T(n,k)/k! = A365229(n).
Comments