cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364967 Number T(n,k) of permutations of [n] for which the difference between the longest and the shortest cycle length is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 3, 3, 10, 6, 8, 25, 45, 20, 30, 176, 60, 250, 90, 144, 721, 861, 770, 1344, 504, 840, 6406, 1778, 7980, 6300, 8736, 3360, 5760, 42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360, 436402, 84150, 363680, 456120, 708048, 378000, 572400, 226800, 403200
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2023

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			T(4,0) = 10: (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432).
T(4,1) = 6: (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), (14)(2)(3).
T(4,2) = 8: (1)(234), (1)(243), (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2).
Triangle T(n,k) begins:
      1;
      1;
      2;
      3,     3;
     10,     6,     8;
     25,    45,    20,    30;
    176,    60,   250,    90,   144;
    721,   861,   770,  1344,   504,   840;
   6406,  1778,  7980,  6300,  8736,  3360,  5760;
  42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360;
  ...
		

Crossrefs

Row sums give A000142.
Column k=0 gives A005225 (for n>=1).
T(n+1,n-1) gives A001048(n) (for n>=1).

Programs

  • Maple
    b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
         b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
    T[n_] := CoefficientList[b[n, n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)

Formula

T(n,k) == 0 (mod k!).
Sum_{k=0..max(0,n-2)} T(n,k)/k! = A365229(n).