A364971 Number T(n,k) of partitions of [n] for which the difference between the longest and the shortest block size is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
1, 1, 2, 2, 3, 5, 6, 4, 2, 35, 10, 5, 27, 60, 95, 15, 6, 2, 371, 315, 161, 21, 7, 142, 938, 2002, 770, 252, 28, 8, 282, 4005, 9744, 5313, 1386, 372, 36, 9, 1073, 16950, 50275, 33705, 11082, 2310, 525, 45, 10, 2, 74657, 283525, 217800, 78078, 20097, 3630, 715, 55, 11
Offset: 0
Examples
T(4,0) = 5: 1|2|3|4, 12|34, 13|24, 14|23, 1234. T(4,1) = 6: 1|2|34, 1|23|4, 1|24|3, 12|3|4, 13|2|4, 14|2|3. T(4,2) = 4: 1|234, 123|4, 124|3, 134|2. Triangle T(n,k) begins: 1; 1; 2; 2, 3; 5, 6, 4; 2, 35, 10, 5; 27, 60, 95, 15, 6; 2, 371, 315, 161, 21, 7; 142, 938, 2002, 770, 252, 28, 8; 282, 4005, 9744, 5313, 1386, 372, 36, 9; 1073, 16950, 50275, 33705, 11082, 2310, 525, 45, 10; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add( b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)): seq(T(n), n=0..12);
-
Mathematica
b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; T[n_] := CoefficientList[b[n, n, 0], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)
Comments