cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364971 Number T(n,k) of partitions of [n] for which the difference between the longest and the shortest block size is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 4, 2, 35, 10, 5, 27, 60, 95, 15, 6, 2, 371, 315, 161, 21, 7, 142, 938, 2002, 770, 252, 28, 8, 282, 4005, 9744, 5313, 1386, 372, 36, 9, 1073, 16950, 50275, 33705, 11082, 2310, 525, 45, 10, 2, 74657, 283525, 217800, 78078, 20097, 3630, 715, 55, 11
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2023

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			T(4,0) = 5: 1|2|3|4, 12|34, 13|24, 14|23, 1234.
T(4,1) = 6: 1|2|34, 1|23|4, 1|24|3, 12|3|4, 13|2|4, 14|2|3.
T(4,2) = 4: 1|234, 123|4, 124|3, 134|2.
Triangle T(n,k) begins:
     1;
     1;
     2;
     2,     3;
     5,     6,     4;
     2,    35,    10,     5;
    27,    60,    95,    15,     6;
     2,   371,   315,   161,    21,    7;
   142,   938,  2002,   770,   252,   28,   8;
   282,  4005,  9744,  5313,  1386,  372,  36,  9;
  1073, 16950, 50275, 33705, 11082, 2310, 525, 45, 10;
  ...
		

Crossrefs

Row sums give A000110.
Column k=0 gives A038041 (for n>=1).
T(n,n-2) gives A000027 (for n>=2).

Programs

  • Maple
    b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
         b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := CoefficientList[b[n, n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)