cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364988 a(n) is the sum of coreful divisors d of n such that n/d is also a coreful divisor.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 12, 0, 0, 0, 0, 30, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 39, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n (see A307958).
The number of these divisors is A361430(n).

Crossrefs

Similar sequences: A000203, A057723 (sum of coreful divisors).

Programs

  • Mathematica
    f[p_, e_] := (p^e - 1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^f[i,2] - 1)/(f[i,1] - 1) - 1);}

Formula

Multiplicative with a(p^e) = (p^e - 1)/(p-1) - 1.
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + (2*p - p^s*(p+1))/p^(2*s)).
a(n) > 0 if and only if n is powerful (A001694).
a(n) <= n with equality only when n = 1.
a(p^2) = p for a prime p.