A364988 a(n) is the sum of coreful divisors d of n such that n/d is also a coreful divisor.
1, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 12, 0, 0, 0, 0, 30, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 39, 0, 0, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^e - 1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^f[i,2] - 1)/(f[i,1] - 1) - 1);}
Formula
Multiplicative with a(p^e) = (p^e - 1)/(p-1) - 1.
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + (2*p - p^s*(p+1))/p^(2*s)).
a(n) > 0 if and only if n is powerful (A001694).
a(n) <= n with equality only when n = 1.
a(p^2) = p for a prime p.
Comments