A365002 Number of ways to write n as a nonnegative linear combination of a strict integer partition.
1, 1, 2, 4, 8, 10, 26, 32, 63, 84, 157, 207, 383, 477, 768, 1108, 1710, 2261, 3536, 4605, 6869, 9339, 13343, 17653, 25785, 33463, 46752, 61549, 85614, 110861, 153719, 197345, 268623, 346845, 463513, 593363, 797082, 1011403, 1335625, 1703143, 2232161, 2820539
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 10 ways: 1*1 1*2 1*3 1*4 1*5 2*1 3*1 2*2 5*1 0*2+3*1 4*1 0*2+5*1 1*2+1*1 0*2+4*1 0*3+5*1 0*3+4*1 0*4+5*1 1*2+2*1 1*2+3*1 1*3+1*1 1*3+1*2 2*2+0*1 1*3+2*1 1*4+1*1 2*2+1*1
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Sum[Length[combs[n,y]], {y,Select[Join@@IntegerPartitions/@Range[n], UnsameQ@@#&]}],{n,0,15}]
-
Python
from itertools import combinations from collections import Counter from sympy.utilities.iterables import partitions def A365002(n): aset = Counter(tuple(sorted(set(p))) for p in partitions(n)) return sum(sum(aset[t] for t in aset if set(t).issubset(set(q))) for l in range(1,n+1) for q in combinations(range(1,n+1),l) if sum(q)<=n) # Chai Wah Wu, Sep 20 2023
Extensions
a(16)-a(34) from Chai Wah Wu, Sep 20 2023
a(35)-a(38) from Chai Wah Wu, Sep 21 2023
a(0)=1 and a(39)-a(41) from Alois P. Heinz, Jan 11 2024
Comments