cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365002 Number of ways to write n as a nonnegative linear combination of a strict integer partition.

Original entry on oeis.org

1, 1, 2, 4, 8, 10, 26, 32, 63, 84, 157, 207, 383, 477, 768, 1108, 1710, 2261, 3536, 4605, 6869, 9339, 13343, 17653, 25785, 33463, 46752, 61549, 85614, 110861, 153719, 197345, 268623, 346845, 463513, 593363, 797082, 1011403, 1335625, 1703143, 2232161, 2820539
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(1) = 1 through a(5) = 10 ways:
  1*1  1*2  1*3      1*4      1*5
       2*1  3*1      2*2      5*1
            0*2+3*1  4*1      0*2+5*1
            1*2+1*1  0*2+4*1  0*3+5*1
                     0*3+4*1  0*4+5*1
                     1*2+2*1  1*2+3*1
                     1*3+1*1  1*3+1*2
                     2*2+0*1  1*3+2*1
                              1*4+1*1
                              2*2+1*1
		

Crossrefs

Row sums of lower-left half of A364916 as an array.
Column sums of right half of A364916 as a triangle.
For all positive coefficients we have A000041, non-strict A006951.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Sum[Length[combs[n,y]], {y,Select[Join@@IntegerPartitions/@Range[n], UnsameQ@@#&]}],{n,0,15}]
  • Python
    from itertools import combinations
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A365002(n):
        aset = Counter(tuple(sorted(set(p))) for p in partitions(n))
        return sum(sum(aset[t] for t in aset if set(t).issubset(set(q))) for l in range(1,n+1) for q in combinations(range(1,n+1),l) if sum(q)<=n) # Chai Wah Wu, Sep 20 2023

Extensions

a(16)-a(34) from Chai Wah Wu, Sep 20 2023
a(35)-a(38) from Chai Wah Wu, Sep 21 2023
a(0)=1 and a(39)-a(41) from Alois P. Heinz, Jan 11 2024