A365003 Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.
1, 4, 9, 25, 36, 48, 49, 100, 121, 160, 169, 196, 225, 289, 361, 441, 448, 484, 529, 567, 676, 750, 810, 841, 900, 961, 1080, 1089, 1156, 1200, 1225, 1369, 1408, 1440, 1444, 1521, 1681, 1764, 1849, 1920, 2116, 2209, 2268, 2352, 2601, 2809, 3024, 3025, 3159
Offset: 1
Keywords
Examples
The prime indices of 750 are {1,2,3,3,3}, with sum 12, while the distinct prime indices {1,2,3} have sum 6, so 750 is in the sequence. The terms together with their prime indices begin: 1: {} 4: {1,1} 9: {2,2} 25: {3,3} 36: {1,1,2,2} 48: {1,1,1,1,2} 49: {4,4} 100: {1,1,3,3} 121: {5,5} 160: {1,1,1,1,1,3} 169: {6,6} 196: {1,1,4,4} 225: {2,2,3,3} 289: {7,7} 361: {8,8} 441: {2,2,4,4} 448: {1,1,1,1,1,1,4}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],Total[prix[#]]==2*Total[Union[prix[#]]]&]
Comments