A365006 Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.
1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 4, 8, 4, 11, 9, 16, 14, 25, 20, 37, 31, 49, 47, 73, 64, 101, 96, 135, 133, 190, 181, 256, 253, 336, 342, 453, 452, 596, 609, 771, 803, 1014, 1041, 1309, 1362, 1674, 1760, 2151, 2249, 2736, 2884, 3449, 3661, 4366, 4615, 5486, 5825
Offset: 0
Keywords
Examples
The a(8) = 2 through a(13) = 11 partitions: (8) (9) (10) (11) (12) (13) (5,3) (5,4) (6,4) (6,5) (7,5) (7,6) (7,2) (7,3) (7,4) (5,4,3) (8,5) (4,3,2) (4,3,2,1) (8,3) (5,4,2,1) (9,4) (9,2) (10,3) (5,4,2) (11,2) (6,3,2) (6,4,3) (5,3,2,1) (6,5,2) (7,4,2) (5,4,3,1) (6,4,2,1)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..109
Crossrefs
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combp[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,30}]
-
Python
from sympy.utilities.iterables import partitions def A365006(n): if n <= 1: return 1 alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)] c = 1 for p in partitions(n,k=n-1): if max(p.values()) == 1: s = set(p) for q in s: if tuple(sorted(s-{q})) in alist[q]: break else: c += 1 return c # Chai Wah Wu, Sep 20 2023
Extensions
a(31)-a(56) from Chai Wah Wu, Sep 20 2023
Comments