cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365023 The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.

Original entry on oeis.org

2821, 63973, 530881, 658801, 670033, 852841, 1050985, 2113921, 4909177, 6049681, 6054985, 8355841, 8719921, 9494101, 9585541, 9613297, 11205601, 11972017, 12262321, 15888313, 17316001, 26932081, 35703361, 36765901, 38637361, 41471521, 43331401, 43620409, 45890209
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Crossrefs

Subsequence of A002997.
Cf. A000961, A087442, A225498, A365022 (lesser counterparts), A365024.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k+1]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]

A365024 Starts of runs of 3 consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between any two consecutive members.

Original entry on oeis.org

656601, 5968873, 9582145, 45877861, 67653433, 84311569, 171454321, 171679561, 193708801, 193910977, 230630401, 357277921, 367804801, 393122521, 393513121, 393716701, 395044651, 557160241, 703995733, 710382401, 775368901, 832060801, 833608321, 834244501, 939947009
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Comments

The second member in each triple is a term of both A365022 and A365023.
171454321 is the least start of 4 consecutive Carmichael numbers with this property, and 393122521 is the least start of 5, and also 6, consecutive Carmichael numbers with this property.

Crossrefs

Subsequence of A002997 and A365023.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[indmax_] := Module[{carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]], s1 = s2 = {}, c1, c2, i}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s1, carmichaels[[k]]]; AppendTo[s2, carmichaels[[k + 1]]]], {k, 1, Min[indmax, Length[carmichaels] - 1]}]; i = Position[Rest[s1] - Most[s2], 0] // Flatten; s1[[i]]]; seq[200]
Showing 1-2 of 2 results.