cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365022 The lesser of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.

Original entry on oeis.org

2465, 62745, 512461, 656601, 658801, 838201, 1033669, 2100901, 4903921, 5968873, 6049681, 8341201, 8719309, 9439201, 9582145, 9585541, 11119105, 11921001, 12261061, 15829633, 17236801, 26921089, 35571601, 36121345, 38624041, 41341321, 43286881, 43584481, 45877861
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Comments

The sequence of weak Carmichael numbers is A225498. The weak Carmichael numbers that are not powers of primes (A000961) are in A087442.

Crossrefs

Subsequence of A002997.
Cf. A000961, A087442, A225498, A365023 (greater counterparts), A365024.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]

A365024 Starts of runs of 3 consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between any two consecutive members.

Original entry on oeis.org

656601, 5968873, 9582145, 45877861, 67653433, 84311569, 171454321, 171679561, 193708801, 193910977, 230630401, 357277921, 367804801, 393122521, 393513121, 393716701, 395044651, 557160241, 703995733, 710382401, 775368901, 832060801, 833608321, 834244501, 939947009
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Comments

The second member in each triple is a term of both A365022 and A365023.
171454321 is the least start of 4 consecutive Carmichael numbers with this property, and 393122521 is the least start of 5, and also 6, consecutive Carmichael numbers with this property.

Crossrefs

Subsequence of A002997 and A365023.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[indmax_] := Module[{carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]], s1 = s2 = {}, c1, c2, i}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s1, carmichaels[[k]]]; AppendTo[s2, carmichaels[[k + 1]]]], {k, 1, Min[indmax, Length[carmichaels] - 1]}]; i = Position[Rest[s1] - Most[s2], 0] // Flatten; s1[[i]]]; seq[200]
Showing 1-2 of 2 results.