A365023 The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.
2821, 63973, 530881, 658801, 670033, 852841, 1050985, 2113921, 4909177, 6049681, 6054985, 8355841, 8719921, 9494101, 9585541, 9613297, 11205601, 11972017, 12262321, 15888313, 17316001, 26932081, 35703361, 36765901, 38637361, 41471521, 43331401, 43620409, 45890209
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Mauro Fiorentini, Carmichael gemelli (numeri di) (in Italian).
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], 2013.
Crossrefs
Programs
-
Mathematica
npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *) seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k+1]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]