cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365023 The greater of twin Carmichael numbers: a pair of consecutive Carmichael numbers (A002997) without a non-prime-power weak Carmichael number (A087442) between them.

Original entry on oeis.org

2821, 63973, 530881, 658801, 670033, 852841, 1050985, 2113921, 4909177, 6049681, 6054985, 8355841, 8719921, 9494101, 9585541, 9613297, 11205601, 11972017, 12262321, 15888313, 17316001, 26932081, 35703361, 36765901, 38637361, 41471521, 43331401, 43620409, 45890209
Offset: 1

Views

Author

Amiram Eldar, Aug 17 2023

Keywords

Crossrefs

Subsequence of A002997.
Cf. A000961, A087442, A225498, A365022 (lesser counterparts), A365024.

Programs

  • Mathematica
    npwcQ[n_] := Length[(p = FactorInteger[n][[;; , 1]])] > 1 && AllTrue[p, Divisible[n - 1, # - 1] &]; (* A087442 *)
    seq[nmax_] := Module[{carmichaels = Select[Range[1, nmax, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &], s = {}, c1, c2}, Do[c1 = carmichaels[[k]] + 2; c2 = carmichaels[[k + 1]] - 2; While[c1 < c2, If[npwcQ[c1], Break[]]; c1 += 2]; If[c1 == c2, AppendTo[s, carmichaels[[k+1]]]], {k, 1, Length[carmichaels] - 1}]; s]; seq[10^6]