A365044 Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.
1, 2, 3, 5, 9, 20, 43, 96, 207, 442, 925, 1913, 3911, 7947, 16061, 32350, 64995, 130384, 261271, 523194, 1047208, 2095459, 4192212, 8386044, 16774078, 33550622, 67104244, 134212163, 268428760, 536862900, 1073732255, 2147472267, 4294953778, 8589918612, 17179850312
Offset: 0
Keywords
Examples
The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8). The a(0) = 1 through a(5) = 20 subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {3} {3} {3} {2,3} {4} {4} {2,3} {5} {3,4} {2,3} {2,3,4} {2,5} {1,2,3,4} {3,4} {3,5} {4,5} {2,3,4} {2,4,5} {3,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Links
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Crossrefs
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}]
-
Python
from itertools import combinations from sympy.utilities.iterables import partitions def A365044(n): mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1)) return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023
Formula
a(n) = 2^n - A365043(n).
Extensions
a(15)-a(34) from Chai Wah Wu, Nov 20 2023
Comments