A365045 Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.
0, 1, 1, 2, 4, 11, 23, 53, 111, 235, 483, 988, 1998, 4036, 8114, 16289, 32645, 65389, 130887, 261923, 524014, 1048251, 2096753, 4193832, 8388034, 16776544, 33553622, 67107919, 134216597, 268434140, 536869355, 1073740012, 2147481511, 4294964834, 8589931700
Offset: 0
Keywords
Examples
The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10). The a(0) = 0 through a(5) = 11 subsets: . {1} {2} {3} {4} {5} {2,3} {3,4} {2,5} {2,3,4} {3,5} {1,2,3,4} {4,5} {2,4,5} {3,4,5} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Links
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Crossrefs
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}]
Formula
a(n) = A070880(n) + 1 for n > 0.
Comments