A365047 a(n) is the number of three-term geometric progressions, with rational ratio > 0, formed by the terms a(n-1), a(n-1-k) and a(n-1-2*k), where k >= 1 and n - 1 - 2*k >= 0.
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 0, 3, 0, 4, 2, 0, 0, 4, 1, 0, 1, 0, 2, 1, 0, 3, 0, 5, 0, 4, 1, 0, 2, 0, 2, 0, 5, 0, 4, 1, 3, 0, 4, 1, 1, 1, 2, 1, 4, 2, 0, 4, 1, 0, 3, 0, 3, 0, 2, 2, 1, 4, 0, 5, 0, 3, 0, 6, 0, 3, 1, 3, 0, 5, 0, 6, 0, 5, 0, 6, 0, 6, 0, 8, 0, 8, 0, 9, 1, 2, 1, 1, 2
Offset: 0
Keywords
Examples
a(3) = 1 and a(2) = a(1) = a(0) = 0 form a progression with ratio 1 separated by one term. a(8) = 1 as a(7) = a(5) = a(3) = 1 for a progression with ratio 1 separated by two terms. a(12) = 2 as a(11) = a(8) = a(5) = 1 form a progression with ratio 1 separated by three terms, while a(11) = a(7) = a(3) = 1 form a progression with ratio 1 separated by four terms. a(20) = 2 as a(19) = 4, a(15) = 2, a(11) = 1 form a progression with ratio 1/2 separated by four terms, while a(19) = 4, a(12) = 2, a(5) = 1 form a progression with ratio 1/2 separated by seven terms. a(170) = 1 as a(169) = 16, a(131) = 12, a(93) = 9 form a progression with ratio 3/4 separated by thirty-eight terms. This is the first series with a ratio that is not an integer or an integer reciprocal.
Links
- Scott R. Shannon, Table of n, a(n) for n = 0..10000
- Scott R. Shannon, Image of the first 50000 terms.
Comments