A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.
1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 3, 5, 5, 3, 4, 4, 6, 5, 6, 6, 5, 8, 7, 5, 6, 8, 6, 10, 7, 10, 9, 10, 8, 12, 11, 7, 10, 12, 12, 10, 15, 11, 14, 15, 15, 16, 12, 18, 15, 11, 14, 20, 18, 20, 15, 22, 15, 22, 21, 25, 24, 24, 18, 27
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 2 2 1 2 2 2 3 3 2 2 4 3 4 3 5 5 3 4 4 6 5 6 6 5 8 7 5 6 8 6 10 7 10 9 10 8 12 11 7 10 12 12 10 15 11 14 15 15 16 12 18 15 11 14 20 18 20 15 22 15 22 21 25 24 24 18 27 Row n = 8 counts the following partitions: (8) (611) (431) (521) (71) (62) (4211) (41111) (332) (53) (44) (22211) (3221) (32111) (5111) (422) (221111) (2111111) (3311) (2222) (311111) (11111111) Row n = 9 counts the following partitions: (81) (63) (54) (72) (9) (621) (6111) (522) (5211) (711) (441) (432) (4311) (3321) (531) (4221) (42111) (411111) (321111) (51111) (22221) (3222) (32211) (21111111) (333) (222111) (2211111) (33111) (3111111) (111111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}]
Comments