A365072 Number of integer partitions of n such that no distinct part can be written as a (strictly) positive linear combination of the other distinct parts.
1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 17, 15, 31, 34, 53, 65, 109, 117, 196, 224, 328, 405, 586, 673, 968, 1163, 1555, 1889, 2531, 2986, 3969, 4744, 6073, 7333, 9317, 11053, 14011, 16710, 20702, 24714, 30549, 36127, 44413, 52561, 63786, 75583, 91377, 107436, 129463
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 6 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (32) (33) (43) (44) (1111) (11111) (222) (52) (53) (111111) (322) (332) (1111111) (2222) (11111111) The a(11) = 17 partitions: (11) (9,2) (7,2,2) (5,3,2,1) (4,3,2,1,1) (1,1,1,1,1,1,1,1,1,1,1) (8,3) (6,3,2) (5,2,2,2) (3,2,2,2,2) (7,4) (5,4,2) (4,3,2,2) (6,5) (5,3,3) (3,3,3,2) (4,4,3)
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Union/@IntegerPartitions[n], Function[ptn,!Or@@Table[combp[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]],{n,0,15}]
-
Python
from sympy.utilities.iterables import partitions def A365072(n): if n <= 1: return 1 alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)] c = 1 for p in partitions(n,k=n-1): s = set(p) for q in s: if tuple(sorted(s-{q})) in alist[q]: break else: c += 1 return c # Chai Wah Wu, Sep 20 2023
Extensions
a(31)-a(49) from Chai Wah Wu, Sep 20 2023
Comments