cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365072 Number of integer partitions of n such that no distinct part can be written as a (strictly) positive linear combination of the other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 17, 15, 31, 34, 53, 65, 109, 117, 196, 224, 328, 405, 586, 673, 968, 1163, 1555, 1889, 2531, 2986, 3969, 4744, 6073, 7333, 9317, 11053, 14011, 16710, 20702, 24714, 30549, 36127, 44413, 52561, 63786, 75583, 91377, 107436, 129463
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (52)       (53)
                                     (111111)  (322)      (332)
                                               (1111111)  (2222)
                                                          (11111111)
The a(11) = 17 partitions:
  (11)  (9,2)  (7,2,2)  (5,3,2,1)  (4,3,2,1,1)  (1,1,1,1,1,1,1,1,1,1,1)
        (8,3)  (6,3,2)  (5,2,2,2)  (3,2,2,2,2)
        (7,4)  (5,4,2)  (4,3,2,2)
        (6,5)  (5,3,3)  (3,3,3,2)
               (4,4,3)
		

Crossrefs

The nonnegative version is A364915, strict A364350.
The strict case is A365006.
For subsets instead of partitions we have A365044, complement A365043.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A237667 counts sum-free partitions, binary A236912.
A364912 counts positive linear combinations of partitions.
A365068 counts combination-full partitions, strict A364839.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Union/@IntegerPartitions[n], Function[ptn,!Or@@Table[combp[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365072(n):
        if n <= 1: return 1
        alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)]
        c = 1
        for p in partitions(n,k=n-1):
            s = set(p)
            for q in s:
                if tuple(sorted(s-{q})) in alist[q]:
                    break
            else:
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(49) from Chai Wah Wu, Sep 20 2023