A365075 Decimal expansion of the initial irrational number of Cantor's diagonal argument: the k-th decimal digit of this constant is equal to the k-th decimal digit of A182972(k)/A182973(k).
5, 3, 0, 6, 0, 6, 0, 0, 2, 0, 0, 4, 0, 1, 8, 0, 2, 0, 5, 3, 0, 2, 3, 8, 0, 4, 0, 1, 2, 7, 5, 7, 3, 6, 0, 6, 2, 5, 7, 0, 3, 5, 3, 6, 5, 0, 8, 7, 3, 3, 5, 6, 0, 6, 8, 6, 3, 2, 0, 1, 2, 3, 8, 0, 9, 3, 0, 1, 9, 6, 6, 4, 6, 9, 5, 2, 0, 6, 7, 2, 0, 3, 5, 0, 6, 9, 2, 0, 5
Offset: 0
Examples
0.5306060020040180205392380401375136062570353650803356... whose decimal expansion is given by the decimal digits on the diagonal of the list of rational numbers given by A182972 and A182973: .5000000000000000000... .3333333333333333333... .2500000000000000000... .6666666666666666667... .2000000000000000000... .1666666666666666667... .4000000000000000000... .7500000000000000000... .1428571428571428571... .6000000000000000000... .1250000000000000000... .2857142857142857143... .8000000000000000000... .1111111111111111111... .4285714285714285714... .1000000000000000000... ...
References
- Andrew Hodges, Alan Turing: The Enigma, Princeton University Press, 2014. See p. 153.
Programs
-
Mathematica
t1={}; For[n=2, n <= 24, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; (* A182972/A182973 *) a={}; For[i=1, i
-
Python
from itertools import count, islice from math import gcd def A365075_gen(): # generator of terms c = 1 for n in count(2): for i in range(1,1+(n-1>>1)): if gcd(i,n-i)==1: c *= 10 yield (i*c//(n-i))%10 A365075_list = list(islice(A365075_gen(),30)) # Chai Wah Wu, Aug 28 2023
Extensions
Data checked by Chai Wah Wu and corrected by Stefano Spezia, Aug 29 2023