cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365075 Decimal expansion of the initial irrational number of Cantor's diagonal argument: the k-th decimal digit of this constant is equal to the k-th decimal digit of A182972(k)/A182973(k).

Original entry on oeis.org

5, 3, 0, 6, 0, 6, 0, 0, 2, 0, 0, 4, 0, 1, 8, 0, 2, 0, 5, 3, 0, 2, 3, 8, 0, 4, 0, 1, 2, 7, 5, 7, 3, 6, 0, 6, 2, 5, 7, 0, 3, 5, 3, 6, 5, 0, 8, 7, 3, 3, 5, 6, 0, 6, 8, 6, 3, 2, 0, 1, 2, 3, 8, 0, 9, 3, 0, 1, 9, 6, 6, 4, 6, 9, 5, 2, 0, 6, 7, 2, 0, 3, 5, 0, 6, 9, 2, 0, 5
Offset: 0

Views

Author

Stefano Spezia, Aug 20 2023

Keywords

Examples

			0.5306060020040180205392380401375136062570353650803356... whose decimal expansion is given by the decimal digits on the diagonal of the list of rational numbers given by A182972 and A182973:
  .5000000000000000000...
  .3333333333333333333...
  .2500000000000000000...
  .6666666666666666667...
  .2000000000000000000...
  .1666666666666666667...
  .4000000000000000000...
  .7500000000000000000...
  .1428571428571428571...
  .6000000000000000000...
  .1250000000000000000...
  .2857142857142857143...
  .8000000000000000000...
  .1111111111111111111...
  .4285714285714285714...
  .1000000000000000000...
  ...
		

References

  • Andrew Hodges, Alan Turing: The Enigma, Princeton University Press, 2014. See p. 153.

Crossrefs

Programs

  • Mathematica
    t1={}; For[n=2, n <= 24, n++, AppendTo[t1, 1/(n-1)]; For[i=2, i <= Floor[(n-1)/2], i++, If[GCD[i, n-i] == 1, AppendTo[t1, i/(n-i)]]]]; (* A182972/A182973 *)
    a={}; For[i=1, i
    				
  • Python
    from itertools import count, islice
    from math import gcd
    def A365075_gen(): # generator of terms
        c = 1
        for n in count(2):
            for i in range(1,1+(n-1>>1)):
                if gcd(i,n-i)==1:
                    c *= 10
                    yield (i*c//(n-i))%10
    A365075_list = list(islice(A365075_gen(),30)) # Chai Wah Wu, Aug 28 2023

Extensions

Data checked by Chai Wah Wu and corrected by Stefano Spezia, Aug 29 2023