cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371574 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x*A(x)) )^2.

Original entry on oeis.org

1, 2, 13, 106, 986, 9902, 104641, 1146654, 12910674, 148462310, 1736178005, 20584835962, 246874102771, 2989580399330, 36504669373240, 448960388422126, 5556453433915920, 69150493021938224, 864833621158491876, 10863849369160145222, 137011477676531989664
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365186.

A371575 G.f. satisfies A(x) = ( 1 + x*A(x)^3 * (1 + x*A(x)) )^2.

Original entry on oeis.org

1, 2, 15, 144, 1587, 18942, 238301, 3111788, 41779164, 573127760, 7998164674, 113189243386, 1620583793262, 23431706243230, 341654376602948, 5017986762425680, 74170837061591036, 1102479579201183898, 16469074050937364044, 247115476148847822586
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A365154 G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x)) )^3.

Original entry on oeis.org

1, 3, 24, 241, 2739, 33513, 430777, 5736027, 78428376, 1094690208, 15533884197, 223429310925, 3250094373788, 47730565667898, 706726767511254, 10538728632234471, 158132963455869912, 2385819265581499593, 36171764848848749205, 550803320282727312804
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(s*k,n-k)/(n+k+1).
Showing 1-3 of 3 results.