cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365126 Number of representations of n as the sum of a prime number and a fourth power of a nonnegative integer.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 2, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^Prime[i], {i, 1, nmax}] Sum[x^j^4, {j, 0, nmax^(1/4)}], {x, 0, nmax}], x] // Rest

Formula

G.f.: (Sum_{i>=1} x^prime(i)) * (Sum_{j>=0} x^(j^4)).

A365127 Numbers that are the sum of a prime number and a fourth power of a nonnegative integer.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 24, 27, 29, 30, 31, 32, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 53, 54, 57, 59, 60, 61, 62, 63, 67, 68, 69, 71, 72, 73, 74, 75, 77, 79, 80, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 97, 98, 99, 100
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; f[x_] := Sum[x^Prime[i], {i, 1, nmax}] Sum[x^j^4, {j, 0, nmax^(1/4)}]; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]]

A365169 Numbers that are not the sum of a prime number and a fourth power of a positive integer.

Original entry on oeis.org

1, 2, 5, 7, 9, 10, 11, 13, 15, 16, 17, 22, 25, 26, 28, 31, 34, 36, 37, 40, 41, 43, 46, 49, 50, 51, 52, 55, 56, 58, 61, 64, 65, 66, 67, 70, 71, 73, 76, 78, 79, 81, 82, 85, 91, 93, 96, 97, 101, 103, 106, 107, 109, 111, 115, 116, 120, 121, 126, 127, 130, 131, 133, 135
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 138; Position[CoefficientList[Series[Sum[x^Prime[i], {i, 1, nmax}] Sum[x^j^4, {j, 1, nmax^(1/4)}], {x, 0, nmax}], x] // Rest, 0] // Flatten
Showing 1-3 of 3 results.