cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A364748 G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 1, 6, 47, 424, 4159, 43097, 464197, 5145475, 58313310, 672598269, 7869856070, 93183973405, 1114471042413, 13443614108307, 163372291277764, 1998239045199623, 24580340878055298, 303893356012560280, 3774099648814193998, 47061518776483143441
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(5*n-4*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=1, t=5, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(5*n-4*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 05 2024: (Start)
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^4/(1 - x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). (End)

A365192 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^2).

Original entry on oeis.org

1, 1, 6, 48, 443, 4445, 47107, 518835, 5880223, 68130860, 803369481, 9609294542, 116310009888, 1421951861817, 17533301767624, 217796367181117, 2722942699583650, 34236790400004432, 432649744252128084, 5492060945760586212, 69998993052214823013
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(n-1, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(n-1,n-k)/(2*n+3*k+1).

A365187 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 6, 48, 446, 4511, 48218, 535800, 6127598, 71648868, 852668952, 10293847592, 125759270354, 1551872951050, 19314892116764, 242182938963024, 3056337851481678, 38790948190319404, 494825459824571528, 6340628082364678016, 81577931200018721464
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(k, n-k)/(3*n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*n+2*k+1,k) * binomial(k,n-k)/(3*n+2*k+1).

A365194 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^6).

Original entry on oeis.org

1, 1, 6, 52, 529, 5889, 69462, 853013, 10791018, 139659604, 1840435530, 24611295075, 333132371248, 4555465710569, 62839303262352, 873363902976309, 12218178082489873, 171918448407833112, 2431415226089290680, 34544425914499450493, 492807213597429920649
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(6*n-k+1,k) * binomial(n-1,n-k)/(6*n-k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*n+2*k+1,k) * binomial(n-1,n-k)/(5*n+2*k+1).
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(6*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Dec 26 2024

A371888 G.f. A(x) satisfies A(x) = 1 - x/A(x) * (1 - A(x) - A(x)^2).

Original entry on oeis.org

1, 1, 2, 3, 3, 1, -2, -1, 10, 25, 12, -65, -151, -7, 588, 1083, -437, -5247, -7732, 7943, 47503, 53793, -105312, -430117, -343042, 1249801, 3866558, 1730019, -13996095, -34243895, -1947202, 150962375, 296101866, -121857183, -1582561868, -2468098041, 2529520767
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-2*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-2*k,n-k-1) for n > 0.
a(n) = (1/2) * Sum_{k=0..n} 4^k * binomial(k/2+1/2,k) * binomial(n-1,n-k)/(k+1) for n > 0.
G.f.: A(x) = 2*x/(1+x - sqrt(1-2*x+5*x^2)).
D-finite with recurrence n*a(n) +3*(-n+1)*a(n-1) +(7*n-18)*a(n-2) +5*(-n+3)*a(n-3)=0. - R. J. Mathar, Apr 22 2024
Showing 1-5 of 5 results.