cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378920 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 5, 38, 339, 3308, 34191, 367844, 4076112, 46204209, 533239820, 6244542391, 74016115926, 886276231388, 10704869669941, 130271156244371, 1595708949486866, 19658780721376791, 243429900033986385, 3028086095940468087, 37821457123957529163, 474145963420441744445
Offset: 0

Views

Author

Seiichi Manyama, Dec 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=-1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x)^2)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A365226 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^6).

Original entry on oeis.org

1, 1, 4, 20, 107, 577, 3010, 14429, 56640, 98020, -1297568, -21901213, -232421636, -2081040375, -16862259358, -126674303915, -887771735205, -5768588276072, -33971373570320, -170393703586467, -576946353425125, 1101490168511323, 47657979846612682
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(6*n-k+1,k) * binomial(n-1,n-k)/(6*n-k+1).

A378890 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/3)/(1 + x*A(x)^(2/3)) )^3.

Original entry on oeis.org

1, 3, 15, 97, 711, 5613, 46552, 399918, 3527553, 31761600, 290721387, 2697131541, 25304974597, 239684681523, 2288849098119, 22012319667437, 213011739042714, 2072597720747352, 20264567643461700, 198998140737895692, 1961831436443431818, 19409477239837165874
Offset: 0

Views

Author

Seiichi Manyama, Dec 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=-1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(4/3)/(1 + x*A(x)^(2/3)) )^3.
G.f. A(x) satisfies A(x) = 1 + x * A(x)^(2/3) * (1 + A(x)^(4/3) + A(x)^(5/3)).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A365225.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A377705 G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 - A(x) + A(x)^3).

Original entry on oeis.org

1, 1, 0, 2, -3, 12, -35, 121, -413, 1464, -5265, 19249, -71236, 266443, -1005511, 3824055, -14641264, 56389272, -218315173, 849170605, -3316817080, 13004273475, -51160638706, 201901154910, -799059730844, 3170706566751, -12611882813645, 50277271079611
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, (-1)^k*binomial(n, k)*binomial(n-3*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} (-1)^k * binomial(n,k) * binomial(n-3*k,n-k-1) for n > 0.
Showing 1-4 of 4 results.