A066716 Decimal expansion of the binary Champernowne constant 0.862240125868... whose binary expansion is the concatenation of 1, 2, 3, ... written in binary.
8, 6, 2, 2, 4, 0, 1, 2, 5, 8, 6, 8, 0, 5, 4, 5, 7, 1, 5, 5, 7, 7, 9, 0, 2, 8, 3, 2, 4, 9, 3, 9, 4, 5, 7, 8, 5, 6, 5, 7, 6, 4, 7, 4, 2, 7, 6, 8, 2, 9, 9, 0, 9, 4, 5, 1, 6, 0, 7, 1, 2, 1, 4, 5, 5, 7, 3, 0, 6, 7, 4, 0, 5, 9, 0, 5, 1, 6, 4, 5, 8, 0, 4, 2, 0, 3, 8, 4, 4, 1, 4, 3, 8, 6, 1, 8, 1, 3, 3, 4
Offset: 0
Examples
0.8622401258680545715577902832493945785657647427682990945160712145573067405905...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Masaaki Amou, Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory, 37 (2) (1991), pp. 231-241.
- A. H. Copeland and P. Erdős, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.
- Eric E. Weisstein, Binary Champernowne Constant.
Crossrefs
Programs
-
Mathematica
a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 100} ]; RealDigits[ N[ FromDigits[ {Flatten[a], 0}, 2], 100]] First[RealDigits[ChampernowneNumber[2], 10, 100]] (* Paolo Xausa, Jun 12 2024 *)
-
PARI
my(s=0.); forstep(n=default(realprecision),1,-1,s=(s+n)>>#binary(n)); s \\ Charles R Greathouse IV, Feb 06 2015, corrected by M. F. Hasler, Mar 22 2017
-
PARI
s=0;sum(n=1,31,n*.5^s+=logint(n,2)+1) \\ Accurate to 0.5^s. The sum up to n=31 is enough for standard precision of 38 digits. - M. F. Hasler, Mar 22 2017
Formula
The "binary" Champernowne constant is the number whose base-2 expansion is the concatenation of the binary representations of the integers, 0.(1)(10)(11)(100)(101)(110)(111)(1000)..., cf. A030302.
Extensions
Leading zero removed, offset adjusted, and keyword:cons added by R. J. Mathar, Mar 04 2010
Name edited by M. F. Hasler, Oct 26 2019
Comments