cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365244 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x^2*A(x)^3).

Original entry on oeis.org

1, 1, 1, 2, 6, 17, 48, 144, 449, 1422, 4568, 14893, 49139, 163665, 549570, 1858754, 6326343, 21651064, 74462327, 257219221, 892047965, 3104749126, 10841192392, 37967942203, 133333407639, 469405472729, 1656383420850, 5857371543403, 20754268304707
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A365244 := proc(n)
        add( binomial(n-k-1,k)*binomial(n+k+1,n-2*k)/(n+k+1),k=0..floor(n/2)) ;
    end proc:
    seq(A365244(n),n=0..80); # R. J. Mathar, Aug 29 2023
  • Mathematica
    nmax = 28; A[_] = 1;
    Do[A[x_] = 1 + x*A[x]/(1 - x^2*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 25 2023 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k-1, k)*binomial(n+k+1, n-2*k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(n+k+1,n-2*k)/(n+k+1).
D-finite with recurrence -9*n*(3*n-5) *(3*n+2) *(15657757169*n -38967750523)*a(n) +3*(1246945698477*n^4 -4744568003544*n^3 +3294337649527*n^2 +2214578323972*n -1078893934272) *a(n-1) +6*(98125454565*n^4 -4049050969593*n^3 +21710764341344*n^2 -39026642938410*n +22772957131188) *a(n-2) +6*(1426531749264*n^4 -6603349282173*n^3 -4098111856085*n^2 +51689999346882*n -56245738276010) *a(n-3) +6*(2322713957130*n^4 -32736762801117*n^3 +166244031312630*n^2 -356896536324983*n +268070043432100) *a(n-4) -6*(n-5) *(2*n-9) *(613164767527*n^2 -4657829502565*n +8148618486058) *a(n-5) +2*(n-6) *(2*n-11) *(271184324539*n^2 -2272760427224*n +4256723647917) *a(n-6) -4*(6162243349*n -17166617798) *(2*n-13)*(n-6) *(n-7)*a(n-7)=0. - R. J. Mathar, Aug 29 2023

A365697 G.f. satisfies A(x) = 1 + x^4*A(x)^3 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 4, 8, 13, 19, 38, 79, 153, 273, 509, 999, 1979, 3818, 7331, 14279, 28189, 55599, 109275, 215165, 426093, 846638, 1683215, 3348212, 6673679, 13333171, 26679522, 53437369, 107151335, 215154204, 432586412, 870678377, 1754094266
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k-1, n-4*k)*binomial(n-k+1, k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,n-4*k) * binomial(n-k+1,k) / (n-k+1).

A365758 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^4*A(x)^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 8, 29, 85, 212, 481, 1081, 2627, 7100, 20328, 58023, 160430, 430391, 1140892, 3051678, 8334638, 23199896, 65148939, 182781853, 510225082, 1419091293, 3948954920, 11034704856, 31001204632, 87466532564, 247303929326, 699572256145
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k-1, k)*binomial(n+k+1, n-4*k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k) * binomial(n+k+1,n-4*k) / (n+k+1).
Showing 1-3 of 3 results.