cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365248 Composite numbers k that are not a prime minus one, for which A214749(k) = k/2.

Original entry on oeis.org

34, 94, 118, 142, 202, 214, 246, 274, 298, 334, 394, 402, 436, 454, 514, 526, 538, 622, 628, 634, 694, 706, 712, 754, 766, 778, 802, 814, 892, 898, 922, 934, 942, 958, 1002, 1006, 1042, 1054, 1114, 1126, 1132, 1138, 1146, 1158, 1174, 1198, 1234, 1246, 1270
Offset: 1

Views

Author

Bob Andriesse, Aug 28 2023

Keywords

Comments

As can be seen from A214749, for most composites k that are not a prime minus one, the smallest value of m that satisfies k-m | k^2+m is smaller than k/2. This sequence lists the exceptions.

Crossrefs

Programs

  • PARI
    f(n) = my(m=1); while((n^2+m) % (n-m), m++); m; \\ A214749
    lista(nn) = my(list=List()); forcomposite(c=1, nn, if ((f(c) == c/2) && !isprime(c+1), listput(list, c))); Vec(list);  \\ Michel Marcus, Sep 08 2023
  • Python
    from sympy import isprime
    a=[]
    for n in range(2,1000):
      for m in range(1,n//2+1):
       if (n**2+m)%(n-m)==0:
        if m==n/2 and not isprime(n+1):
         a.append(n)
        break
    print(a)
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.abc import x, y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A365248_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:not isprime(n+1) and min(int(x) for x,y in diop_quadratic(n*(n-y)+x*(y+1)) if x>0)==n>>1, count(max(startvalue+startvalue&1,2),2))
    A365248_list = list(islice(A365248_gen(),30)) # Chai Wah Wu, Oct 06 2023