A365249 Composite numbers k for which A214749(k) = (k-1)/2.
25, 85, 121, 133, 145, 187, 205, 217, 221, 253, 301, 325, 361, 385, 403, 437, 445, 451, 481, 505, 529, 533, 553, 565, 625, 667, 697, 721, 745, 793, 817, 841, 865, 893, 913, 925, 973, 985, 1003, 1027, 1037, 1045, 1057, 1073, 1081, 1141, 1157, 1165, 1207, 1225
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
PARI
f(n) = my(m=1); while((n^2+m) % (n-m), m++); m; \\ A214749 lista(nn) = my(list=List()); forcomposite(c=1, nn, if (f(c) == (c-1)/2, listput(list, c))); Vec(list); \\ Michel Marcus, Sep 04 2023
-
Python
from sympy import isprime a=[] for n in range(3,1000): for m in range(1,(n-1)//2+1): if (n**2+m)%(n-m)==0: if m==(n-1)/2 and not isprime(n): a.append(n) break print(a)
-
Python
from itertools import count, islice from sympy import isprime from sympy.abc import x, y from sympy.solvers.diophantine.diophantine import diop_quadratic def A365249_gen(startvalue=3): # generator of terms >= startvalue return filter(lambda n:not isprime(n) and min(int(x) for x,y in diop_quadratic(n*(n-y)+x*(y+1)) if x>0)==n-1>>1, count(max(startvalue+startvalue&1^1,3),2)) A365249_list = list(islice(A365249_gen(),30)) # Chai Wah Wu, Oct 06 2023
Comments