A365257 The five digits of a(n) and their four successive absolute first differences are all distinct.
14928, 15829, 17958, 18259, 18694, 18695, 19372, 19375, 19627, 25917, 27391, 27398, 28149, 28749, 28947, 34928, 35917, 37289, 37916, 38926, 39157, 39578, 43829, 45829, 47289, 47916, 49318, 49681, 49687, 51869, 53719, 57391, 57398, 58926, 59318, 59681, 59687, 61973, 61974, 62983, 62985, 67958, 68149, 68749, 68947, 69157, 69578, 71952, 71953, 72691, 72698, 74619, 74982, 74986, 75193, 75196, 76859, 78259, 78694, 78695, 81394, 81395, 81539, 82941, 82943, 85179, 85629, 85971, 85976, 86749, 87269, 87593, 87596, 89372, 89375, 89627, 91647, 91735, 92658, 92834, 92851, 92854, 93518, 94182, 94186, 94768, 94782, 94786, 95281, 95287, 95867, 96278, 96815, 97158, 98273, 98274
Offset: 1
Examples
The five digits of a(1) = 14928 produce the four successive absolute first differences 3 (= 1 - 4), 5 (= 4 - 9), 7 (= 9 - 2) and 6 (= 2 - 8), resulting in nine distinct digits. .1.4.9.2.8. ..3.5.7.6..
Programs
-
Mathematica
Select[Range[10000,99999],Sort@Join[IntegerDigits@#, Abs@Differences@IntegerDigits@#]==Range@9&]
Comments